j^2=20

Simple and best practice solution for j^2=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for j^2=20 equation:



j^2=20
We move all terms to the left:
j^2-(20)=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $

See similar equations:

| -8p+64=p+388 | | 155=5(1+6v) | | 4(-3r+1)=100 | | 17n+3=n-429 | | 265x=4240 | | -120=4(4x-2) | | 1-(2/2t-1)=(8/(2t-1)^2) | | 1,5x+70=0,7x+175 | | 855+170x=2895 | | 1700+0,6a=635+1,2a | | a+176=-8a-4 | | 5x-15=71+3x | | y^2+73=73 | | 855+170x=265x | | 10k-5=88k+34 | | 2/3(n-(5/6)=2(1/2) | | w^2-86=14 | | 12p-15=3 | | 3x-56x=2 | | b+61=-4b-9 | | 5x-7=x+77 | | 15-2b=8b+5 | | 12q-4=90q+12 | | -7t+9=t+297 | | 300-3x=96 | | 12p-4=-9p+11 | | 3x=2-1 | | z^2-78=-53 | | 7p(-3)=325 | | 4x+7=(-25) | | b+219=-5b+9 | | 7.2x-4.4=62.6 |

Equations solver categories